Electric Flux Density

Yikes! Things have gotten complicated!
In free space, we found that charge $\rho_{v}(\bar{r})$ creates an electric field $E(\bar{r})$.

Pretty simple! $\rho_{v}(\bar{r}) \longmapsto E(\bar{r})$

But, if dielectric material is present, we find that charge $\rho_{v}(\bar{r})$ creates an initial electric field $E_{i}(\bar{r})$. This electric field in turn polarizes the material, forming bound charge $\rho_{v p}(\bar{r})$. This bound charge, however, then creates its own electric field $\mathrm{E}_{s}(\bar{r})$ (sometimes called a secondary field), which modifies the initial electric field!

Not so simple! $\rho_{v}(\bar{r}) \Longrightarrow E_{i}(\bar{r}) \Longrightarrow \rho_{v p}(\bar{r}) \Longrightarrow E_{s}(\bar{r})$

The total electric field created by free charge when dielectric material is present is thus $E(\bar{r})=E_{i}(\bar{r})+E_{s}(\bar{r})$.

Q: Isn't there some easier way to account for the effect of dielectric material??

A: Yes there is! We use the concept of dielectric permittivity, and a new vector field called the electric flux density $D(\bar{r})$.

To see how this works, first consider the point form of Gauss's Law:

$$
\nabla \cdot \mathbf{E}(\overline{\mathrm{r}})=\frac{\rho_{v T}(\overline{\mathrm{r}})}{\varepsilon_{0}}
$$

where $\rho_{v T}(\bar{r})$ is the total charge density, consisting of both the free charge density $\rho_{v}(\bar{r})$ and bound charge density $\rho_{v p}(\bar{r})$:

$$
\rho_{v T}(\bar{r})=\rho_{v}(\bar{r})+\rho_{v p}(\bar{r})
$$

Therefore, we can write Gauss's Law as:

$$
\varepsilon_{0} \nabla \cdot \mathbf{E}(\overline{\mathbf{r}})=\rho_{v}(\bar{r})+\rho_{v p}(\bar{r})
$$

Recall the bound charge density is equal to:

$$
\rho_{v p}(\bar{r})=-\nabla \cdot \mathbf{P}(\bar{r})
$$

Inserting into the above equation:

$$
\varepsilon_{0} \nabla \cdot \mathbf{E}(\overline{\mathbf{r}})=\rho_{r}(\overline{\mathbf{r}})-\nabla \cdot \mathbf{P}(\overline{\mathbf{r}})
$$

And rearranging:

$$
\begin{aligned}
\varepsilon_{0} \nabla \cdot \mathbf{E}(\bar{r})+\nabla \cdot \mathbf{P}(\bar{r}) & =\rho_{v}(\bar{r}) \\
\nabla \cdot\left[\varepsilon_{0} \mathbf{E}(\bar{r})+\mathbf{P}(\bar{r})\right] & =\rho_{v}(\bar{r})
\end{aligned}
$$

Note this final result says that the divergence of vector field $\varepsilon_{0} \mathbf{E}(\bar{r})+\mathbf{P}(\bar{r})$ is equal to the free charge density $\rho_{v}(\bar{r})$. Let's define this vector field the electric flux density $D(\bar{r})$:

$$
\text { electric flux density } \mathbf{D}(\overline{\mathbf{r}}) \doteq \varepsilon_{0} \mathbf{E}(\overline{\mathbf{r}})+\mathbf{P}(\overline{\mathrm{r}}) \quad\left[\mathrm{C} / \mathrm{m}^{2}\right]
$$

Therefore, we can write a new form of Gauss's Law:

$$
\nabla \cdot D(\bar{r})=\rho_{r}(\bar{r})
$$

This equation says that the electric flux density $D(\bar{r})$ diverges from free charge $\rho_{v}(\bar{r})$. In other words, the source of electric flux density is free charge $\rho_{v}(\bar{r})$--and free charge only!

* The electric field $E(\bar{r})$ is created by both free charge and bound charge within the dielectric material.
* However, the electric flux density $D(\bar{r})$ is created by free charge only-the bound charge within the dielectric material makes no difference with regard to D (\bar{r}) !

But wait! We can simplify this further. Recall that the polarization vector is related to electric field by susceptibility $\chi_{e}(\bar{r})$:

$$
\mathbf{P}(\bar{r})=\varepsilon_{0} \chi_{e}(\bar{r}) \mathbf{E}(\bar{r})
$$

Therefore the electric flux density is:

$$
\begin{aligned}
\mathbf{D}(\bar{r}) & =\varepsilon_{0} \mathbf{E}(\bar{r})+\varepsilon_{0} \chi_{e}(\bar{r}) \mathbf{E}(\bar{r}) \\
& =\varepsilon_{0}\left(1+\chi_{e}(\bar{r})\right) \mathbf{E}(\bar{r})
\end{aligned}
$$

We can further simplify this by defining the permittivity of the medium (the dielectric material):

$$
\text { permittivity } \varepsilon(\bar{r}) \doteq \varepsilon_{0}\left(1+\chi_{e}(\bar{r})\right)
$$

And can further define relative permittivity:

$$
\text { relative permittivity } \varepsilon_{r}(\bar{r}) \doteq \frac{\varepsilon(\bar{r})}{\varepsilon_{0}}=1+\chi_{e}(\bar{r})
$$

Note therefore that $\varepsilon(\bar{r})=\varepsilon_{r}(\bar{r}) \varepsilon_{0}$.

We can thus write a simple relationship between electric flux density and electric field:

$$
\begin{aligned}
\mathbf{D}(\overline{\mathbf{r}}) & =\varepsilon(\overline{\mathbf{r}}) \mathbf{E}(\overline{\mathbf{r}}) \\
& =\varepsilon_{0} \varepsilon_{r}(\overline{\mathrm{r}}) \mathbf{E}(\overline{\mathrm{r}})
\end{aligned}
$$

Like conductivity $\sigma(\bar{r})$, permittivity $\varepsilon(\bar{r})$ is a fundamental material parameter. Also like conductivity, it relates the electric field to another vector field.

Thus, we have an alternative way to view electrostatics:

1. Free charge $\rho_{v}(\bar{r})$ creates electric flux density $D(\bar{r})$.
2. The electric field can be then determined by simply dividing $D(\bar{r})$ by the material permittivity $\varepsilon(\bar{r})$ (i.e., $E(\bar{r})=D(\bar{r}) / \varepsilon(\bar{r}))$.

$$
\rho_{v}(\bar{r}) \Longleftrightarrow D(\bar{r}) \Longleftrightarrow E(\bar{r})
$$

